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Abstract
Privacy protection is an important consideration
when releasing medical databases to the research
community. We show that while recent advances
in anonymization algorithms provide increased
levels of protection, it is still possible to calculate
approximations to the original data set.- In some
cases, one can even uniquely reconstruct entries in
a table before anonymization.

In this paper, we demonstrate how knowledge of
an anonymization algorithm based on ambiguat-
ing data cell entries can be used to undo the
anonymization process. We investigate the effect
of this algorithm and its reversal on data sets of
varying sizes and distributions. It is shown that
by using a computationally complex disambigua-
tion process, information on individuals can be ex-
tracted from an anonymized data set.

1 Introduction
With evidence-based medicine becoming more and
more important, the widespread dissemination of
medical information is becoming more and more
important. The need for dissemination pertains
not only to the results and findings obtained from
data, but to the data itself. When only few pa-
tient cases are documented in a study, it becomes
important to pool several studies to obtain a suffi-
ciently large data set. Such data sets overcome the
limitations imposed by smaller data sets, making
statistical methods more accurate.1
While freely granting access to medical data can

only be beneficial to the public, the right of the
individual to privacy protection must not be vio-

lated.24 Therefore, data sets are "scrubbed" be-
fore released to the public; i.e., any unique identi-
fiers in the data are removed. It has been shown,
however, that this is not sufficient to completely
anonymize the data.5 Given other data tables that
contain unique identifiers as well as some of the
variables in the anonymized table, it is often pos-
sible to link both tables and thus reconstruct iden-
tifiers for the original table.
Over the last couple of years, there have been

several approaches to remedy this situation by ei-
ther generalization,6'7 column suppression,8 or en-
cryption.9 Some of the most promising procedures
for ambiguating data tables cell suppression algo-
rithms.1112 This approach strikes a balance be-
tween wanting to release as much information as
possible (for research purposes) and restricting ac-
cess as much as possible (for privacy protection).
Cell suppression works by blanking certain fields
in the data table in such a way that no entry (row)
in the table is unique. This makes it impossible
to uniquely identify an entry by linking to another
data table, since in an ambiguated table, at least
two rows will match any linking operation.

In this paper, we will focus only on privacy pro-
tection by cell suppression and demonstrate that
data tables ambiguated by this method are not
immune to disambiguation efforts. For this, we
will provide a deeper understanding of the cell
suppression algorithm in Section 2, followed by
a presentation of how the effects of ambiguation
can be reversed in Section 3. Section 4 presents
experiments on data sets of varying sizes and dis-
tributions, showing that ambiguation by cell sup-
pression can indeed be undone. A discussion in
Section 5 concludes the paper.
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2 Minimal Cell Suppression

The need for additional levels of privacy protec-
tion (after eliminating unique identifiers from a
table) can be illustrated in a simple example. Sup-
pose that a database containing the following de-
mographic data and medical condition is released
to the research community. Further assume that
there are no other rows with the same combination
of values in the table.

age gender ZIP code | med. condition
20-30
20-30
50-60
20-30

m
m

f

02215
02215
02115
02115

0
1
1
0

Now if someone has access to a database contain-
ing date of birth, gender and ZIP code informa-
tion, and knows that a specific person has been
tested for the medical study reported in the ta-
ble, it is sometimes possible to uniquely identify
this person and his/her medical condition. A real-
world example of this scenario is published in the
literature.5 In our example, unique identification
is possible in rows 3 ankd 4 of the table above, but
not in rows 1 and 2, since they contain the same
demographic data. In the following, we will say
that two rows are identical if they agree on their
demographic data. Similarly, a row is unique if
there is no other row with the same entries in the
demographic data columns.

This attack on privacy protection is possible be-
cause there are unique rows in the table. The
simplest approach to diverting it would thus be
to eliminate all unique rows from the table before
releasing it. However, such an approach is imprac-
tical, as the number of unique rows grows with the
number of non-redundant attributes (columns) in
the table. This is shown graphically in Figure 1.
In databases with more than a few columns, delet-
ing unique rows would then be equivalent to dis-
carding large portions of the database.
A more viable approach is to ambiguate certain

table entries in such a way that there are no more
unique rows in the table. To ambiguate an entry
means to replace this entry with a special sym-
bol I that is, by definition, indiscernible from all
other entries. In the above data table, one could
replace entries with these "wild card" symbols in
the following way:

300 __

250

200

100

50

3 4 5 6 7

Figure 1: F6r tables with constant number of rows
(here: 300), the number of unique rows grows as
new columns are added. Shown here are the av-
erage number of unique rows (and their standard
deviations over 10 iterations) in tables of normally
distributed ordinal data with 3 to 7 columns.

age gender ZIP code I med. condition
20-30 m 02215
20-30 m 02215
50-60 1 02115
l f 02115

0
1
1
0

This process, of ambiguation data is called min-
imal cell suppression.11'12 Since the I symbols
match all other entries, the last two rows are thus
indiscernable and no longer unique. Note that the
minimum number of l. symbols to ambiguate this
table is two; these two symbols could have also
replaced the first entry in row 3 (50-60) and the
second entry in row 4 (f).
The drawback of minimal cell suppression is

that it achieves privacy protection by introducing
missing values into the data. It is, however, im-
portant to note that there are far fewer "holes" in
the ambiguated table than unique rows before am-
biguation. This is due to the fact that a row with
a I symbol can match more than one unique row.
The number of ± symbols in a data table grows
with both the number of rows and the number
of columns in the table. However, when regard-
ing the fraction of ambiguated entries in the data
table, it can be seen that the percentage ofI sym-
bols grows with the number of columns, but de-
creases with the number of rows. This is because
each new row is less likely to be unique, whereas
each new uncorrelated column increases the num-
ber of rows that have to be ambiguated. This fact
is illustrated for tables with a fixed number of rows
in Figure 2 and for a fixed number of columns in
Figure 3.
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Figure 2: Number of ambiguated entries for data
tables with fixed number of rows (here: 300) as
fraction of total number of entries, for varying
number of columns. Shown here are averages (and
their standard deviations over 10 iterations) in ta-
bles of normally distributed ordinal data with 3 to
7 columns.

For increased levels of protection, it is possible
to extend the argument above to require that ev-
ery row is indiscernible from two or more other
rows, and not just from one other row. This ex-
tension requires additional I symbols in the table.
The problem for finding the minimum number

of I symbols and their optimal placement to am-
biguate a given data table is NP-hard and can
therefore not be solved optimally in reasonable
time for all but small examples. It is, however,
possible to use heuristics to find nearly optimal
solutions.11'12

In the next section, we will show that while min-
imal cell suppression algorithms can be used to
ambiguate data tables before releasing them to the
research community, they cannot guarantee com-
plete privacy protection.

3 Disambiguating
Anonymized Data

Consider the following simple ambiguated data ta-
ble:

age gender ZIP code med. condition
20-30 m 02215
20-30 1 02215

0
1

Now it is immediately obvious that the missing
value I could only have had the value f in the
original (un-ambiguated) table: Since the only two
possible values for the attribute "gender" are m

Figure 3: Number of ambiguated entries for data
tables with fixed number of columns (here: 5) as
fraction of total number of entries, for varying
number of rows. Shown here are averages (and
their standard deviations over 10 iterations) in ta-
bles of normally distributed ordinal data with 150
to 350 rows.

and f, and replacing I by m would have made the
two rows indiscernible in the original table (and
therefore no ambiguation would have been neces-
sary), we can conclude that the original entry had
been f.
The approach used to disambiguate the above

example can be formalized and applied to larger
data tables as well. The key to this attack at
privacy-protected data is knowledge of the pro-
tection algorithm: The above argument relies on
knowing that the entries in the original table
had been ambiguated by minimal cell suppression.
Given this knowledge, one can construct the fol-
lowing algorithm for disambiguating a given data
table:

1. determine the possible values that each I
symbol can represent, i.e., the range of at-
tribute values in all columns that contain I
symbols,

2. generate all possible instantiations of the am-
biguated table by replacing all I symbols by
the values they can represent,

3. eliminate all table instantiations that could
not have led to the given ambiguated table,
first by

(a) checking whether a row containing a I
symbol is now unique in the instantiated
table, and if this holds true for all rows,
then by
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(b) checking whether the ambiguation algo-
rithm, when given the instantiated table
as input, produces the given ambiguated
table as output.

Note that step 3(b) is much more general than
step 3(a), so that step 3(a) is not really necessary.
The computational complexity of 3(a), however,
is only a fraction of that of 3(b), and it therefore
makes sense to check this simple condition first.
One can easily see that disambiguation is much

more computationally demanding than ambigua-
tion by noting that the number of iterations of
the algorithm above grows exponentially with
the number of I symbols in the ambiguated ta-
ble. This is due to the fact that each I sym-
bol has to be instantiated with all possible val-
ues independently of all other instantiations. An
ambiguated two-column data set with attribute
values {-5,... , 5} in both columns and four I

symbols must therefore be instantiated 411 =

4, 194, 304 times. Given that each iteration could
potentially call the ambiguation algorithm in step
3(b), it is obvious that disambiguation is compu-
tationally demanding.

Given an ambiguated data table, the result of
disambiguation is a set of all possible instantiated
tables that, when used as input for the ambigua-
tion algorithm, produce the given ambiguated ta-
ble as output. If this set contains only one in-
stantiation, then there is a unique value for all I

symbols. Otherwise, there are rows that were in-
stantiated in more than one way. For these rows,
one can only give distributions of their (instanti-
ated) values. The conclusions to be drawn from
such cases are statistical, such as determining the
most likely value for a I symbol.

4 Experimental Results

Since the ambiguation algorithm uses a heuristic,
it is hard to calculate which of the two situations
above (one or many solutions to the disambigua-
tion problem) is more likely to be encountered
in practice. We therefore investigated the per-
formance of the disambiguation algorithm on two
different data sets to see how data set size and dis-
tribution influence the results. Note that due to
the computational complexity of the disambigua-
tion algorithm, the data sets analyzed in this pa-
per can only be seen as toy examples that serve to
validate the approach presented here.

Figure 4: Histograms of values instantiated for
each of the eight I symbols in the data set of
experiment 1.

Figure 5: Histograms of values instantiated for
each of the eight I symbols in the data set of
experiment 2.

Experiment 1 The 200-row, 5-column data in
this experiment was drawn from a zero-mean nor-
mal distribution with diagonal covariance matrix
with a2 = 0.08. To produce ordinal data, all real-
valued random numbers were rounded to the clos-
est integer. This meant that attribute values were
limited to the set {-1, 0, 1}; eight I symbols were
required to ambiguate the data set. Disambigua-
tion therefore only had to check 38 = 6, 561 in-
stantiations. Of these, 14 produced the original
table when ambiguated. The histograms of the
values replacing the I symbols in these instanti-
ations are shown in Figure 4. One can see that
for the I symbols 1,3,5 and 7, the only possible
instantiation is -1. For the other symbols, values
-1 and 1 are almost equally likely.
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Experiment 2 For this experiment, we com-
bined 3-column integer data from two narrowly
overlapping Gaussian distributions with means
(0, 0, 0) and (2,2,2), respectively, and diagonal co-
variance matrix (u2 = 0.2). A total of 80 cases
were generated from these two distributions. The
attribute values were in the set {-1,0,1,2,3};
eight I symbols were generated by the ambigua-
tion algorithm. Thus, there were 58 = 390,625
instantiations to be checked for validity. Of these,
210 were found to give the same l symbol place-
ment as the original ambiguated data. The his-
tograms of the values replacing the I symbols in
these instantiations are shown in Figure 5. Ex-
cept for I symbol 5, where -2 is the only possible
instantiation, all other I symbols can be instan-
tiated in at least two ways. One can, however,
exclude values 0,1 and 2 as possible instantiations
of I symbols 1,2,3,4,6 and 7, and values 0 and 2
as instantiations of I symbol 8.

5 Discussion
The experiments in Section 4 show that disam-
biguation can be used to fill in the holes produced
by minimal cell suppression. In several cases, dis-
ambiguation produces a unique replacement for
the I symbol; in others, it can be used to rule out
certain values. Although the computational com-
plexity is prohibitive for single workstations on
real-world data sets, the examples presented here
show that minimal cell suppression is not immune
to a brute-force disambiguation effort, given the
necessary computational resources. Higher levels
of security are possible by combining cell suppres-
sion and other privacy protection algorithms. It
will be the topic of further research to determine
how much more resistant such combinations are
to disambiguation efforts.
More detailed analysis of the disambiguation

results can be obtained by noting that some of
the instantiated rows are more likely than others,
given that the data was produced by a specific dis-
tribution. Although this distribution is not known
in practice, there are numerous density estimation
or model fitting techniques that can be used to in-
fer this distribution from the non-I rows in the
data table. It is then possible to rank instantia-
tions based on the Likelihood that they were pro-
duced by the inferred distribution. More research
and experiments will be required to determine how
this approach can be used to narrow down the so-
lutions of the disambiguation algorithm.

References
[1] Normand S. Meta-analysis: formulating,

evaluating, combining, and reporting. Stat
Med 1999;18:321-359.

[2] Lako C. Privacy protection and population-
based health research. Soc Sci Med 1986;
23:293-295.

[3] Buckovich S, Rippen H, Rozen M. Driving
toward guiding principles: a goal for privacy,
confidentiality, and security of health infor-
mation. J Am Med Inform Assoc 1999;6:122-
133.

[4] Korn D. Medical information privacy and the
conduct of biomedical research. Acad Med
2000;75:963-968.

[5] Sweeney L. Weaving technology and policy
together to maintain confidentiality. J Law
Med Ethics 1997;25:98-110.

[6] Sweeney L. Replacing personally-identifying
information in medical records, the scrub sys-
tem. Proc AMIA Annu Fall Symp 1996;333-
337.

[7] Sweeney L. Guaranteeing anonymity when
sharing medical data, the datafly system.
Proc AMIA Annu Fall Symp 1997;51-55.

[8] Su TA, Ozsoyoglu G. Controlling fd and mvd
inferences in multilevel relational database
systems. IEEE Transactions on Knowledge
and Data Engineering 1991;3:474-485.

[9] Gulcher J, Kristjansson K, Gudbjartsson H,
Stefansson K. Protection of privacy by third-
party encryption in genetic research in Ice-
land. Eur J Hum Genet 2000;8:739-742.

[10] Fischetti M, Salazar J. Models and algo-
rithms for the 2-dimensional cell suppres-
sion problem in statistical disclosure con-
trol. Mathematical Programming 1999;
84:283-312.

[11] 0hrn A, Ohno-Machado L. Using Boolean
reasoning to anonymize databases. Artif In-
tell Med 1999;15:235-254.

[12] Vinterbo S, Ohno-Machado L. Table am-
biguation by minimal cell suppression: proW
lem characterization and effect on functional
dependecies. Technical report, Decision Sys-
tems Group, Brigham and Women's Hospital,
Harvard Medical School, Boston, 2001.

148


